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THE STABILITY OF SPECTRAL SCHEMES FOR THE 
LARGE EDDY SIMULATION OF CHANNEL FLOWS 

D. C. LESLIE AND S. GAO 
The Turbulence Unit, Queen Mary College, Mile End Road, London El 4NS, U.K.  

SUMMARY 
In a spectral LES code it is not possible to treat the actual eddy viscosity implicitly. We have therefore 
examined the effect on stability of adding a constant pseudo-viscosity to the implicit term and subtracting it 
from the explicit term: stability limits have been derived theoretically and verified computationally for two 
different treatments of the explicit term. We have also studied the effect of a stochastic temporal variation of 
the eddy viscosity. 
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INTRODUCTION 

Numerical simulation is increasingly recognized as an attractive new method for studying 
turbulent flows. It is largely free from the uncertainty of closure models such as k--E, while it can 
represent the flows in a detail that experiment cannot approach. Indeed some experimenters are 
now prepared to treat the output of numerical simulation codes as though it were experimental 
data. 

The preferred method of simulation is to represent all sizes of structure (or eddy) down to the 
Kolmogorov length scales: the known properties of the energy spectrum at high wave number, 
including its exponential fall-off at high wave number, show that there is no need to go further. 
Since the simulation is necessarily three-dimensional and since the range of scales is large, the 
computation is extremely demanding even at the lowest Reynolds or Rayleigh numbers (Re or Ra) 
at which the flow is fully turbulent. Indeed, Corrsin’ argued many years ago that such a ‘full 
simulation’ would never be possible. 

Events have proved Corrsin wrong, but only just, and there is still no way of making a full 
simulation at Re or Ra values of practical interest. If we wish to make a numerical simulation of 
flows at even quite moderate Re or Ra, then we must turn to large eddy simulation (LES). In this 
technique the flow is divided into large eddies or grid scales (GS) and small eddies or subgrid scales 
(SGS): the former are represented, the latter are not. The unrepresented SGS interact with the 
represented GS through the non-linear terms in the equations of motion, the interaction 
appearing as an additional stress force Tij,? A full account is given by Voke and Collins.2 

Since the SGS are not represented explicitly, the subgrid stress force must be modelled in terms 
of the GS only: this is known as subgrid modelling (SGM). The simplest SGM, still relevant today, 
is that of Smagorin~ky,~ in which 

s . . = u .  . + u . .  
IJ 1, 1 J . 1  

T..=v S . .  
I J  e ij’ 

v,=(Cul A)2S, S = ( $ S i j S j i ) l ” .  
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C,, is a non-dimensional constant and A is the mesh spacing. Full details of this and later models 
are given by Voke and Collins.z With this model, the subgrid stress Tij is not very different from 
the viscous stress vSi2 However, the (molecular) kinematic viscosity v is a property of the fluid 
(which is usually taken to be constant in LES), while the eddy viscosity v ,  must be computed and 
varies from place to place. 

THE BUOYAN CODE: 

BUOYAN is one of the major codes of the Turbulence Unit (TU) of Queen Mary College. It solves 
the GS Navier-Stokes equations 

aui a ( (v + v,) ” ) = a P  ~ a (u.u .) 
at a x j  a x j  ax i  a x j  * J ’  

ui being the GS velocity. (The meaning of p is not straightforward and the SGM is more elaborate 
than this equation suggests; these points are not relevant to the present discussion.) An account of 
the code is given by Gavrilakis et aL4 

The code is limited to fully developed flow in a parallel-sided channel, with periodicity in the 
streamwise and spanwise directions. It is fully spectral, using a Fourier representation in these two 
directions and Chebyshev polynomials normal to the wall. The molecular-viscous and pressure 
terms are treated implicitly (Crank-Nicholson), while the eddy-viscous and inertial terms are 
treated explicitly (Adams-Bashforth). The whole time advancement is thus second-order accurate, 
and the code can override the molecular-viscous limit on the time step. It would be possible to 
override the advective Courant limit, but we believe that important information would be lost if 
this were done. 

Thus the time advancement equations are implemented as 

where 

M,=(transform of) (4) 

Hi=(transform of) ~ (v,.Sij-uiuj) , (5)  ( a!j ) 
while the affix indicates the time level. To solve (3), BUOYAN uses a fast projective-type algorithm 
due to Antonopoulos-Domis, in which there is no need to solve a Poisson equation for the 
pressure. 

THE EDDY VISCOSITY LIMIT 

The matrix representation of the molecular viscosity is diagonal in Fourier space and tridiagonal 
in Chebyshev space: thus the implicit treatment of this effect is compatible with a fast solution for 
u;+l, the velocity field at the new time level. None of this is true for the eddy viscosity. Since it is 
space-dependent, its matrix representation is full: the process of solving for u;” would have been 
slowed down very greatly if this term had been treated implicitly. The consequence of (5 )  is that the 
code cannot override the eddy-viscous limit, and this could result in a considerable wastage of 
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computer time. It should be emphasized that this problem is unique to spectral codes: the eddy 
viscosity is diagonal in finite difference codes. 

We have therefore added, as an option in the BUOYAN code, the facility to add a constant eddy 
viscosity to the implicit term and to subtract it from the explicit term. The full forms of equations 
(4) and (5) are thus 

M,=(transform of) - [ (v+Ve)Si j -p6, , ]  , ( a:j ) 
H,=(transform of) - [ ( v , -Ve)S i j -u iu j ]  , ( a:j ) (7) 

V, being at the code user's discretion. Since it is constant, fast solution is still possible. 
One may hope that, with a suitably choseil value of V,, this option will enable the user to 

override the eddy-viscous limit. The theme of this paper is the stability analysis of the 
Crank-Nicholson/Adams-Bashforth (CN-AB) scheme set out in equation (3), to test whether the 
option of including a constant eddy viscosity does achieve its intended purpose. Since some 
workers (e.g. Schumann') have preferred LeapFrog to Adams-Bashforth, we have also analysed 
the Crank-Nicholson/LeapFrog (CN-LF) scheme 

(This formulation of the CN term assures stability in the absence of an explicit term.) 
As has been said above, there would be no reason to introduce the modification (6) and (7) into a 

finite difference code. We have nonetheless done the analysis in a (one-dimensional) finite 
difference framework, because this simplified the work very considerably. From past experience, 
one can be confident that the results so deduced will also apply to spectral codes: the quantity Ax 
is to be interpreted as the spacing between the collocation points of the spectral scheme. 

STABILITY ANALYSIS 

CN-AB scheme 

From equations (3), (6) and (7) the diffusion equation for one dimension, say x, may be written 

u"+'-u" 

A t  
1 n + 1  = (v  + V,) (5 u,, +)u",) + (v -Ve) ($ gx -f u;; 1). 

In the von Neumann formalism (see e.g. Roache6) 

U" 
u:,= -2(l-COS 0)- Ax2' 0=kAx, 

and (9) reduces to 
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e, = 2( 1 - cos 0) d,, 

(v + V,) A t  

r=1,2,  

(v ,  - V,) A t  d2=---- d ,  = 
A x 2  ' A x 2  . 

To analyse (1 l), put 
U"+ 1 = ;lu" 

and then 

A2 - bL - c = 0. (15) 

l L I < l .  (16) 

The stability requirement is simply 

From the results proved by Miller7 (we are indebted to a referee for this reference) i t  can be 
easily shown that the necessary and sufficient stability conditions for equation (15) are 

I CI < 1 (17) 
and 

I b I -t c < 1. 

Equation (1 8) implies 

e, -t-e2>0 

and 

e;! < 1, 

and equation (1 7) implies 

le2 I.:2+e1, (21) 
which must hold if (19) and (20) are satisfied. Equation (19) is automatically satisfied, so that 
equation (20) is all that is needed. 

Since 

we must require (to be sure of complying with equation (20)) 

d,  <a 
or 

which shows why it might be advantageous to use a non-zero V,. If we let V, =O (so that no use is 
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made of the volume-averaging facility in BUOYAN), then (24) reduces to 

v , A t  1 
dxz<4' 

which is independent of the value of el and is therefore the known viscous stability limit for a pure 
Adams-Bashforth scheme. It is twice as tight as that for a simple Euler scheme, and this is 
presumably because the Adams-Bashforth scheme spans a double time interval. Obviously the 
requirement for (24) is weaker than (25). If we choose Ve>ve,  (24) is always satisfied, so the 
computation will always be stable. 

From the above analysis the conclusions on the CN-AB scheme are that if we do not use the F, 
option, the diffusive limit (25) on the Adams-Bashforth scheme must be observed; it is quite 
restrictive. If we use the option and let F, < v,, (24) must be satisfied in order to make sure of the 
stability. However, if we choose V, > y e ,  the calculation will be always stable. 

The above conclusions can easily be extended to three-dimensional calculations. For example, 
equation (24) generalizes in the obvious way to 

1 1  

CN-LF scheme 

Equation (8) can be simplified to 
U n + l - U n - l  

= (v + re)($ u:; +$ u:; ' )+(v-  Ve) u:, 2At 

for one-dimensional diffusion. This can be put into the form (1 1) 

and now 
1 -el , c=- 2e2 b= -- 

1 +el 1 +el' 

el and e2 being defined in (13) and (14). 
The stability criteria are thus 

] b l + c t l  if b2+4c>0, 

(29) reduces to 
el > I  e2 I 

Since el = 0, e, > 0 in the pure LeapFrog scheme, the condition (3 1) cannot be satisfied. Thus the 
pure LeapFrog treatment of pure diffusion is absolutely unstable, and this is another known 
result. For the mixed CN-LF scheme the effect of these relations is as follows. 

When b2 + 4c > 0, we find: 

(i) If v > v e ,  the calculation is stable for any A t  with V,=O. 
(ii) i f  V, > v, and v, then the calculation is automatically stable. 
(iii) If v , > v  and V,, then it is stable for 

v, > 3 (v, - v). 
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When b2 + 4 c  < 0, then, according to (28), the requirement (30) is always satisfied. Then we have 
automatic stability. 

To summarize, if v > ve, the calculation is stable for any A t  with V, = 0; if we cannot be sure of 
satisfying v >  v , ,  then V, should be chosen to satisfy (32). 

Thus the behaviour of the CN-LF scheme is distinctly better than that of the CN-AB scheme, 
since the latter never allows an unlimited time step with V, = 0. Nonetheless, the CN-AB scheme 
can be stabilized by choosing Ve > v,.  

NUMERICAL TESTS O F  ’THE STABILITY ANALYSIS 

The conclusions drawn from the stability analysis above have been tested by computation. The 
results are wholly consistent with the analytical conclusions. 

As a typical example, we have investigated the one-dimensional unsteady flow between two flat 
plates: this is illustrated schematically in Figure 1 .  The upper plate is impulsively given a constant 
speed while the lower plate is kept stationary. The aim is to find the velocity distribution between 
the plates as a function of time. 

The form of equation (9) appropriate to this problem is 

C j l  u;+; + c j 2  u;+ + cj3 u;:; == cj4, 

with 
(33) 

C j l  = d l ,  cj2 = - (2 + 2 d J ,  c j 3  =dl ,  

~ j 4 =  - ( d l  + 3 d 2 )  u;- 1 - ( 2 - - 2 d , - 6 d Z )  ~ j n - ( d l +  3 d 2 )  u;+ 1 

+ d,(u;I: - 2u;-  + u;; :I, (34) 
d ,  and d, being defined by (14). 

Solving this tridiagonal matrix problem, we can get the vdocity distribution between the two 
plates at different times. Some typical results are shown in Figures 2 and 3. 

From (27)  the CN-LF scheme for this problem can be formulated as 

C j l  u;: ; + c,2 u; + + c j3  24;:; == cj4, (35) 
where 

~ j l = d l ,  ~ j 2 =  - ( 1 + 2 d 1 ) ,  c j 3 = d l ,  
~j4=-222(u;-1-2uj”+u;+1)-B1~J;I;-( l  - 2 d 1 ) u J - ’ + d 1 u ; ; : .  (36) 

t ,Moving P l a t e  

--+ u o  

,,station a r y PI ate 

Figure 1 .  Schematic diagram of moving plate 
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Figure 2. Verification of stability criterion of equation (24) for CN-AB scheme: 

-A-, d ,  = 0.28 > $, unstable 
- x -, d ,  =0.20<& stable; 
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Figure 3. Verification of stability criterion for CN-AB scheme with Ge > v,: 

- x -, d ,  = - 1.0, stable; 
-A-, d2 = -0.2, stable 
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Figure 4. Verification of stability for CN-LF scheme with i;,=O: 

-A-, d,=0.1 when v < v , ,  unstable 
-x-, d,=0.6 when v>v , ,  stable; 

The different sets of v, ve, V, and d ,  are again chosen so as to check the stability of the scheme: 
typical results are shown in Figures 4 and 5. 

We have performed calculations for all the stability criteria found analytically for two finite 
difference schemes, but for simplicity only some typical results are presented here. The compu- 
tation confirms the analysis in every case. 
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Figure 5. Verification of stability criterion of equation (32) Tor CN-LF scheme with f e > O  

-x-, d,=0.4 when t e > > ( v e - v ) ,  stable; 
-A-, d,=0.1 when Ge<>(v,-v), unstable 

EFFECT OF TIME-VARYING EDDY VISCOSITY 

The eddy viscosity is formed from stochastic variables and therefore the stability parameter 1 will 
vary from one time step to the next. When 1 is constant, the solution of the pure decay problem is 

u" := 1" uo. (37) 
Provided 111 -= 1, the solution will converge to zero as it should. This is clearly necessary for the 
proper simulation of the driven problem with a stochastic input, but it is not so clear that it is 
sufficient. 

In the random problem (37) generalizes to 

."=( j =  fi 1 Aj)  U0 

and we now require that the product should tend to zero as n tends to infinity. It can be proved 
that a sufficient condition for this is 

1 "  
n j = l  - C A< 1 for large n. (39) 

Since (39) is sufficient, then the implication is that the stability criteria may be applied to the 
mean value of v ,  (that is, the local time mean). Upward fluctuations which badly violate the 
stability limit may temporarily disturb the simulation, but it should recover quite quickly. This is 
proved by computational tests in which the input value of Y,: was generated from an exponential 
distribution with a chosen v, (mean). 

Now we define 

v,(mean) - V, 
A X 2  

d,(mean) = - h t. 

For the CN-AB scheme when V, = 0, the stability condition, according to equation (25), should 
now be 

v,(mean) 1 
At<-,  

Ax2 4 
~- 
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Figure 6. Stability tests with random v, for CN-AB scheme: 

-x-, d,(mean)=0.25 with V,=O, stable; 
-A-, d,(mean)=0.34 with Ve=O, unstable 
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Figure 7. The comparison of stabilities with v,(mean) and v, for CN-AB scheme: 

- x  -, d,(mean)=0.27 with te=O, stable; 
-A-, d, =0.27 with te =0,  unstable 

and some test results are given in Figure 6. We have also performed numerous other tests for 
different schemes and they always confirm the conclusions drawn above. 

It is interesting that in some cases with a non-zero v,(mean) the stochastic computation may be 
stable, while one with a constant v, equal to the mean value of the stochastic computation may be 
unstable. Such behaviour is shown in Figure 7. 

Of course one cannot ignore the variation of the local time mean of v, with z ,  and the criterion 
(26) must be applied at that z-value where its left-hand side is largest. 

CONCLUSIONS 

The numerical stabilities of the CN-AB and CN-LF schemes have been analysed and complete 
stability criteria have been obtained. The results show that inclusion of the option of a constant 
eddy viscosity in the BUOYAN code eases the stability requirement: if V, is carefully chosen the 
calculations with either scheme can be made stable with any time step. These conclusions have 
been carefully verified by computation tests. The effect of a time-varying eddy viscosity on stability 
is investigated and the sufficient condition for stability with random eddy viscosity inputs has been 
theoretically obtained and computationally verified. Although the analysis has been done for the 
one-dimensional situation only, the conclusions can be easily extended to three dimensions. 
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